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Abstract—Phased array weather radars, particularly with high
temporal resolution, essentially need a robust and fast beam-
former to accurately estimate precipitation profiles such as re-
flectivity and Doppler velocity. In this paper, we introduce a
neural-network-based beamformer to address this problem. In
particular, the optimum weight vector is computed by modeling
the problem as a three-layer radial basis function neural network
(RBFNN), which is trained with I/O pairs obtained from the
optimum Wiener solution. The RBFNN was chosen because of its
characteristic of accurate approximation and good generalization,
and its robustness against interference and noise. The proposed
RBFNN beamforming method is compared with traditional beam-
forming methods, namely, Fourier beamforming (FR), Capon
beamforming, and the flower pollination algorithm (FPA), which
is a recently proposed nature-inspired optimization algorithm. It
is shown that the RBFNN approach has nearly optimal perfor-
mance in various precipitation radar signal simulations relative
to the rival methods. The validity of the RBFNN beamformer is
demonstrated by using real weather data collected by the phased
array radar (PAR) at Osaka University, and compared with, in
addition to the FR and FPA methods, the minimum mean square
error beamforming method. It is shown that the RBFNN method
estimates the reflectivity of the PAR at Osaka University with less
clutter level than those of the other three methods.

Index Terms—Evolutionary optimization, phased array digital
beamforming (DBF), radial basis function (RBF) neural networks,
weather radar.

I. INTRODUCTION

THE development of high-speed phased array weather
radars (PARs) with rapid and accurate detection of weather

phenomena is an important topic of current research interest.
Recently, PARs have demonstrated high time-resolution and
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Fig. 1. Photographs of the PAR at Suita campus at Osaka University. The right
photograph shows the 128-element antenna array of the PAR system inside the
radar dome of the left photograph.

high-precision estimation of Doppler velocity and reflectiv-
ity of precipitation compared with the mechanically scanning
radar. PARs use electronic scanning to rapidly collect radar
measurements: The mobile rapid scanning X-band polarimetric
Doppler radar [1], the atmospheric imaging radar [2], and the
airborne polarimetric Doppler weather radar [3] are examples
of PARs in meteorological applications. We should also include
the National Weather Radar Testbed, which is being evaluated
as a multifunction PAR [4].

Osaka University and Toshiba Corporation have started de-
veloping a new PAR at X-band [5] under the grant of the
Japanese National Institute of Information and Communica-
tions Technology in 2007, and installed at Osaka University,
Osaka, Japan, in 2012 mainly for operational purposes. This
new PAR system (see Fig. 1) has the unique capability of
scanning the whole sky with 100 m and 10–30 s resolution up to
60 km. The system adopts the digital beamforming (DBF) tech-
nique for elevation scanning with 100 elevation angles and me-
chanically rotates the array antenna in azimuth direction with
1◦ resolution within 10–30 s. The radar transmits a broad beam
of several degrees (fan beam) with 24 antenna array elements
and receives and digitizes the back scattered signal at 128 array
elements; then, by digitally forming the received beam, fast
scanning is realized.

A significant problem with fan beam transmission is the huge
sidelobes of strong echoes from strong precipitation cells or
clutter, which are almost two times stronger than a sharp beam
transmission and reception in decibels. For example, while
a sharp beam transmission and reception has a first sidelobe
level of −27 dB from the main lobe for the center direction,
as in the case with the Colorado State University–University
of Chicago–Illinois State Weather Survey (CSU-CHILL) radar
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[19], which has a normal parabolic dish antenna, a configura-
tion of uniform and sharp beams has a first sidelobe level of
−13 dB in the same angle. Consequently, observations from
the PAR systems often show the received signal is seriously
contaminated by relatively high power from ground clutter
through the sidelobes of the broad transmitting beam.

Several adaptive DBF methods have been proposed for clut-
ter mitigation in a PAR system. In particular, in atmospheric
radars, the Capon beamforming (CP) method has been used
extensively [6], [7]; the Capon method requires a sufficient
number of pulses to produce reasonable results and cannot
work well with 16 pulses as in the PAR. A beamformer based
on a recursive implementation of the minimum mean square
error (MMSE) framework, with a unity gain constraint in
the lock direction, has been developed in [8]. The MMSE
method offers sidelobe reduction and accurate estimation for
point and distributed targets with fewer pulses on the PAR;
however, for small ranges of elevation angles, it does not
converge and consequently gives bad results particularly on real
data PAR.

On the other hand, neural networks [9] are gaining a huge
momentum in the field of signal processing [10] mainly because
of its generalization capability, nonlinear property, massive
parallelism, adaptive learning capability, fast convergence rates,
insensitivity to uncertainty, and VLSI implementations. In par-
ticular, neural networks have shown to successfully classify
complex data and perform function approximation for many
remote sensing problems. For example, in [11], neural networks
is used for cloud classification, in [12], for the retrieval of
atmospheric temperature and moisture profiles, and in [13] for
rainfall estimation, to name a few.

Motivated by the inherent advantages of the neural network,
this paper proposes the development of a radial-basis-function
neural network (RBFNN)-based approach to the beamforming
of PAR using both simulated and real data. Neural networks
typically adopt two steps: training and recalling. The network
is first trained with known input–output pattern pairs; although
a large training pattern set may be required for network training,
it can be implemented offline. After training, it can be used
directly to replace the complex system dynamics. In this paper,
the RBFNN is trained on the optimum weights of Wiener solu-
tion. The RBFNN has shown an excellent performance in esti-
mating point and distributed targets, irrespective of the number
of used pulses in the PAR, compared to the traditional Fourier
beamforming (FR), Capon methods, and the flower pollina-
tion algorithm (FPA). Moreover, when operated on real data,
collected by the PAR at Osaka University (PAR@OU), the
RBFNN method estimates radar reflectivity with less clutter
than the FR, FPA, and MMSE methods.

This paper is organized as follows. In Section II, the sig-
nal model of PAR and the development of RBFNN for the
PAR beamforming problem are introduced. Both FR and the
FPA are introduced and used for performance comparisons. In
Section III, estimation accuracy values of these three methods,
in addition to the Capon method, are evaluated and compared,
using signals generated by the precipitation radar signal sim-
ulator. Moreover, a quantitative comparison about the beam-
forming speed among the mentioned methods is given. In
Section IV, estimation results for precipitation for RBFNN,
FR, FPA, and MMSE methods are illustrated with the use of

real data collected by PAR@OU. Conclusions are summarized
in Section V.

II. METHODOLOGY

A. Signal Model

Assuming a uniform linear phased array antenna with N
elements, the lth time sample of the received N × 1 complex
amplitude xl is expressed by an associated M × 1 complex
amplitude sl in an arbitrary range bin, i.e., an N ×M matrix
A that consists of the spatial steering vectors a(θm), m = 0, 1,
. . . ,M − 1, the additive Gaussian noise nl as

xl = Asl + nl (1)

where

xl = [xl,0 xl,1 · · · xl,N−1]
T (2)

sl = [sl,0 sl,1 · · · sl,M−1]
T (3)

A = [a(θ0) a(θ1) · · · a(θM−1)] (4)

a(θm) = [1 exp (−jβ1(θm)) · · · exp (−jβN−1(θm))]T

(5)

βn(θm) = (2π/λ) dn sin(θm) (6)

where [·]T is the transpose operator, λ is the wavelength, and
d is the spacing between any two adjacent antenna elements.
In the PAR settings, θm is the elevation angle, and sl corre-
sponds to the M -separated precipitation profiles in elevation
angles. The estimated precipitation profiles yl = [yl,0 yl,1 · · ·
yl,M−1]

T are calculated as

yl,m = wH
mxl (7)

where wm is the N × 1 complex array weights that correspond
to the elevation angle m, and [·]H is the complex conjugate
transpose.

B. Wiener Solution

Consider a reference signal dl,m, which is either identical to
or highly correlated with the desired signal sl,m and is uncorre-
lated with the signals coming from the other directions. Define
the error signal εl,m as [14]

εl,m = dl,m − yl,m (8)

substituting from (7) into (8), we obtain

εl,m = dl,m −wH
mxl. (9)

For the purpose of simplification, we will suppress the
subscripts l and m and insert them in the final solution [14].
Squaring (9), we have

|ε|2 = |d|2 − 2dwHx+wHxxHw. (10)

Taking the expected value of both sides and simplifying the
expression, we obtain the MSE as follows:

E
[
|ε|2

]
= E

[
|d|2

]
− 2wHr+wHRxw (11)

where r is the cross correlation between the reference and the
observation signals, and R is the autocorrelation matrix of the
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observation x; the two are defined as follows:

r = E[dx] (12)

Rx = E[xxH ]. (13)

It should be noted that the MMSE solution is the result of
minimizing (11).

In general, for an arbitrary number of weights, one can find
the minimum value by taking the gradient of the MSE with
respect to the weight vectors and equating it to zero. Thus, the
Wiener–Hopf equation is given by [14]

∇w

(
E
[
|ε|2

])
= 2Rxw − 2r = 0 (14)

yielding the optimum Wiener solution as

wWiener = R−1
x r. (15)

If we allow the reference signal dl,m to be equal to the desired
signal sl,m and if sl,m is uncorrelated with all other signals,
one may simplify the correlation r. Using (12), the simplified
correlation r is

r = E
[
s∗l,m · xl

]
= sm · a(θm) (16)

where

sm = E
[
|sl,m|2

]
=

1

L

L∑
l=1

sl,ms∗l,m (17)

L is the number of time samples. Now, the optimum weights
can then be identified as [14]

wm
Wiener = smR−1

x a(θm). (18)

C. Fourier Beamforming

The Fourier beamformer, also known as the matched filter,
is the most basic beamformer in PARs for steering a beam in
a certain direction by uniforming the phase shift. In particular,
the array weights vector can be expressed as [8]

wm
FR =

a(θm)

N
. (19)

D. Flower Pollination Algorithm

The FPA is a recently invented evolutionary optimization
algorithm inspired from the flower pollination process of flow-
ering plants [15]. The main purpose of a flower is ultimately
reproduction via pollination. Flower pollination is typically
associated with the transfer of pollen, and such transfer is often
linked with pollinators such as insects, birds, bats, and other
animals. Pollination can be achieved by self-pollination or cross
pollination. Cross pollination, or allogamy, means pollination
can occur from pollen of a flower of different plants, whereas
self-pollination is the fertilization of one flower, such as peach
flowers, from pollen of the same flower or different flowers of
the same plant, which often occurs when there is no reliable
pollinator available. Biotic cross-pollination may occur at long
distance, and the pollinators such as bees, bats, birds, and
flies can fly a long distance; thus, they can be considered the

global pollination. In addition, bees and birds may behave in
accordance to the Lévy flight behavior [16], with jump or fly
distance steps obeying a Lévy distribution. Furthermore, flower
constancy can be used as an increment step using the similarity
or difference of two flowers.

In [15], the above characteristics of the pollination process,
flower constancy, and pollinator behavior are idealized in the
following four rules: 1) biotic pollination and cross-pollination
are considered global pollination processes with pollen-
carrying pollinators performing Lévy flights; 2) abiotic and
self-pollination are considered as local pollination; 3) flower
constancy can be considered the reproduction probability that
is proportional to the similarity of two involved flowers; and
4) local and global pollination are controlled by a probability
switch p ∈ [0, 1].

Due to the physical proximity and other factors such as wind,
local pollination can have a significant fraction p in the overall
pollination activities. In the global pollination step, flower
pollens are carried by pollinators such as insects, and pollens
can travel over a long distance. This ensures the pollination and
reproduction of the fittest; thus, we represent the most fittest as
g. The first rule can then be formulated as [15]

wt+1
i = wt

i + V
(
wt

i − g
)

(20)

where wt
i is the solution vector, i.e., pollen i at iteration t, g is

the current best solution, and V is the strength of the pollina-
tion, which is a step size randomly drawn from Lévy distribu-
tion. The local pollination (Rule 2) can be represented as

wt+1
i = wt

i + γ
(
wt

j −wt
k

)
(21)

where wt
j and wt

k are pollens from different flowers of the
same plant species. The parameter γ is drawn from uniform
distribution in the range between zero and one.

In this paper, the FPA is used to minimize the cost function
in (11) using 100 iterations (per elevation angle) to get the
optimum weights wFPA. The switch probability p is chosen to
be 0.8, and the population size is 25.

E. RBFNN Beamformer

The Wiener weight vector wWiener in (18) is not suitable
for real-time implementation in its current format. Therefore,
it can be approximated using a suitable architecture such as the
RBFNN. The array outputs are preprocessed, and then applied
to the RBFNN, where Rx is fed to the input layer of the
RBFNN, and the vector ŵWiener is generated at the output layer
as an estimate of the Wiener weight vector. As it is the case with
most neural networks, the RBFNN is designed to perform an
input–output mapping trained with M precipitation profiles or
elevation angles (Rm

x ;wm
Wiener), m = 0, 1, . . . ,M − 1 [17].

1) RBFNN Model: The RBFNN is a special three-layer feed-
forward network, which consists of an input layer, an output
layer, and a hidden layer as shown in Fig. 2. In the hidden
layer, the nonlinear functions are usually considered Gaussian
functions of appropriately chosen means and variance. The
weights from the hidden to the output layer are determined by
considering a supervised learning procedure. Assume that the
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Fig. 2. Architecture of the RBFNN.

input, hidden, and output layers have J,K, P nodes, respec-
tively. The network output vector is given by

wp =
K∑

k=1

ωp,ke
− ‖z−ck‖2

σ2
k (p = 1, . . . , P ) (22)

where z = [z1 z2 · · · zJ ] is the input vector to the network,
ck and σk are the center vector and the standard deviation
(spread parameter) of the kth Gaussian function, respectively,
and {ωp,k; p = 1, . . . , P ; k = 1, . . . ,K} is the weight from the
kth hidden node to pth output node.

2) Generation of Training Data: To reduce the training time
of the RBFNN, a fast training approach is adopted from [17] in
which only either the upper or lower triangular part (excluding
the main diagonal) of the correlation matrix Rx is considered.
In this case, an N ×N correlation matrix Rx is rearranged in
an N(N − 1)/2 component input vector as

b =
[
R12, R13, . . . , R1,N ;R23, . . . , R2,N ; . . . ;R(N−1),N

]
.

(23)

Note that the network needs twice as many input nodes since
it does not deal with complex numbers; therefore, the total
number of input nodes is N(N − 1). The input vector is then
normalized by its norm to unify the input parameter space, i.e.,

z =
b

‖b‖ (24)

producing the required training input/output pairs of the train-
ing set, i.e., (zm;wm

Wiener), m = 0, 1, . . . ,M − 1. Once the
RBFNN is trained with a representative set of training input/
output pairs, it is ready to function in the performance and
recalling phases. In the performance phase, the trained network
can be directly used to produce optimum weights for the real-
time PAR beamformer [17].

3) Performance Phase of the RBFNN: After the training
phase is complete, the RBFNN should have established an
approximation of the desired input/output mapping. In the
recalling phase, the neural network is expected to generalize,
i.e., responds to inputs that have never been seen before but
are drawn from the same input distribution that is used in the
training set. The procedure of the performance phase is sum-
marized in the following simple steps.

1) Rearrange the correlation matrix into vector z as in (23)
and (24).

2) Present vector z at the input layer of the trained RBFNN;
the output layer of the trained RBFNN will produce
wRBFNN (ŵWiener) as an estimate to the optimum
Wiener weight vector of (18).

TABLE I
CHARACTERISTICS OF RADAR SIGNAL SIMULATION

In this paper, the RBFNN is trained using the MATLAB
training function newrb, in which a hidden node is added each
epoch (iteration) until a target MSE is reached.

III. SIMULATION RESULTS

The performance of RBFNN beamforming is evaluated and
compared with both the FR and FPA methods via radar signal
simulations. Simulation signals were generated by a procedure
described by Chandrasekar et al. [18] that generates a time
series of received signals having a Gaussian spectral shape. The
elevation profile of power corresponding to s is determined at
each simulation model; then, the received signals x are calcu-
lated using (1) with additive Gaussian noise. Here, each antenna
element is assumed omnidirectional. The parameters of this
simulation are shown in Table I, the frequency, number of an-
tenna elements, spacing of adjacent antenna elements, tilt angle
of the antenna, and pulse repetition frequency are designed
parameters of PAR@OU operating at about 16 pulses. A wide
range of elevation angles from −30◦ to 90◦ is considered. Since
the PAR@OU transmits a fan beam with −3-dB beamwidth of
about 10◦, we may deal with a narrower range of elevation
angle, which gives us less computational cost. It should be
noted that the fan beam is not considered in this paper because
the beamformer processes only the receiver side and not the
transmitted signal. Additionally, the simulation with this wide
range of elevation angles obviously shows the difference among
methods of comparison.

A. Estimation of Point Targets

Here, point targets, such as aircraft, are estimated using the
FR, FPA, and RBFNN methods and compared with the true
values. In Fig. 3(a), an example of the mean power estimates
for two point targets is shown; it is assumed that the two targets
are placed at elevations of 25◦ and 35◦, respectively, in the
same range, and azimuth bin with mean received power of
15 and 45 dB, and mean Doppler velocities of 8 and 10 m/s, as
indicated by the black circles. The white noise is assumed to be
about 10 dB. The estimated results of the two elevations are
summarized in Table II, it should be noted that the true values
do not strictly agree with the input parameters indicated earlier
because the radar signal simulator provides random values.
On the other hand, the FR correctly estimates the received
power of the right (strong) target; however, it has the poorest
resolution and the highest sidelobes. The received power of
the left (weak) target is overestimated by about 0.4 dB by the
sidelobes of the right target. The FPA detects both targets with
optimal resolution (no sidelobes); it correctly estimates the right
target while overestimating the left target by only 0.05 dB. The
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Fig. 3. Estimation of point targets. (a) Mean power estimates for two targets
placed at elevations of 25◦ and 35◦ . (b) Formed beam pattern grazing at an
elevation angle of 25◦.

TABLE II
MEAN POWER ESTIMATES FOR THE POINT TARGETS

TABLE III
BIAS ERROR OF MISSING POINT TARGETS IN RBFNN TRAINING

RBFNN shows also optimal resolution with no sidelobes but
gives the optimal power estimation results for both the targets
that agree exactly with the truth. In Fig. 3(b), the formed beam
patterns of each method for an elevation of 25◦ are shown. FPA
and RBFNN form a null at an elevation of 35◦. This is why
detection and power estimates of the left target are not much
affected by the right target in these methods, unlike in the FR.
Note also that the RBFNN has a deeper null at 35◦ compared
with the FPA, which provides more accurate estimate, the same
as the truth value, at the 25◦ target.

The question now is how the NN behaves when it encounters
inputs that are drawn from a different distribution than the
one used in the training set. This can be checked by letting
either of the targets to be missing or both targets be missing
in the training phase. Table III shows the bias errors in these

Fig. 4. Estimation of distributed targets for one-cell precipitation. (a) Mean
power estimate. (b) Formed beam pattern grazing at an elevation angle of 25◦.

cases (the bias error is defined as the difference between the
estimated power and the correct power in decibels). When the
left target is missing, the RBFNN is trained at 25.1◦ and tested
at 25◦. If the right target is missing, the network is trained at
35.5◦ and tested at 35◦. If both targets are missed, a third middle
target is added at 30◦ of power 35 dB. We can conclude from
Table III that the RBFNN leads to small bias errors when tested
at elevations not encountered in the training phase.

B. Estimation of Distributed Targets

1) One Precipitation Cell: In Fig. 4(a), an example of the
mean power estimates for one-cell distributed targets is shown.
The mean power of additional white noise is assumed to be
about 10 dB. It can be seen that the FR consistently overesti-
mates the truth getting closer to it as the elevation increases.
Moreover, we can see that the RBFNN correctly estimates the
mean power better than the FPA. As shown in Fig. 4(b), both
the FPA and the RBFNN suppress sidelobes adaptively.

To show the robustness of the RBFNN beamformer, it has
been tested with inputs that have never been seen during the
training phase; consequently, this also validates its generaliza-
tion capability. Fig. 5 shows the estimation of one-cell distrib-
uted target in which the RBFNN is tested with 0.1◦ step in
elevation while trained with 0.3◦ and 0.5◦ elevation step. It can
be seen that the network has very good agreement with the truth
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Fig. 5. Estimation of one-cell distributed target with RBFNN tested at 0.1◦

elevation step and trained with an elevation step of (a) 0.3◦ and (b) 0.5◦.

in case of 0.3◦ step training while having little overestimations
in 0.5◦ step training case.

2) Two Precipitation Cells: The estimation accuracy values
of these methods are compared in mean power by the radar
signal simulation assuming distributed targets with two precip-
itation cells. Example of the mean power estimate is shown in
Fig. 6(a). The mean power estimate of these methods is cal-
culated with the use of the most general methods based on a
time series, which is elaborated in [19, Ch. 5 (5.10)]. As shown
in Fig. 6(a), the FR shows high sidelobes in mean power
estimates and correctly estimates them only around the peaks,
in which strong distributed targets exist; the FPA gives better
results but with little underestimation. It is obvious that the
RBFNN has superior performance over the other two meth-
ods. The elevation–Doppler velocity spectrographs shown in
Fig. 7 are very helpful for understanding the characteristics of
these methods. In particular, in Fig. 7(a), it is shown that signals
contaminate each other by their sidelobes in the FR method.
However, the FPA gives little underestimation with much
suppression of sidelobes. Compared with both the FR and the
FPA, the spectrograph of RBFNN is very similar to that of the
truth.

It should be noted that the PAR is designed to detect pre-
cipitation in urban areas in which it is anticipated that strong
ground clutter and its sidelobes significantly contaminate the
desired signals. Ground clutter appears at elevations in which
ground, trees, or buildings exist in a desired range bin. The es-
timated results are evaluated with the addition of ground clutter
signals. The ground clutter elements have a mean power of a
Gaussian shape whose peak is positioned at 0◦ elevation with
about 110 dB peak power [see Fig. 6(b)]; their mean Doppler
velocities are 0 m/s in all the elevations. This clutter signal is
also generated by the radar signal simulator stated earlier. In
Fig. 6(b), it can be seen that FR has too large sidelobes to detect
the distributed signals, and the FPA has little underestimation
with sidelobe suppression. RBFNN correctly suppresses the

Fig. 6. Mean power estimates of distributed targets for two-cell precipitation.
(a) Without clutter. (b) With a clutter of about 110 dB peak power at 0◦

elevation.

sidelobes of the strong ground clutter and lets the distributed
signals appear. Fig. 7(b) shows the elevation–Doppler veloc-
ity spectrographs of Fig. 6(b). The characteristics of RBFNN
training of all the given simulations, using the newrb Matlab
training function, are summarized in Table IV.

To test its generalization, the RBFNN is trained at 0.5◦

elevation step but is tested at 0.1◦ step. Fig. 8 shows the two-cell
distributed target in this case. It can be seen that the RBFNN can
predict the precipitation profile quiet fairly even if it is tested
with angles never saw in the training.

C. Beamforming Speed

Beamforming speed of the beamformer methods is defined
here as the computational complexity of the method which is
defined as the execution or CPU time of each method. The av-
erage simulation time per elevation angle was 45 μs, 0.08 s, and
0.4 s, for the FR, RBFNN, and FPA algorithms, respectively.
Note that the total CPU time is the time taken per elevation
angle multiplied by the total number of elevation angles used
in the simulation. Moreover, note that the execution time of
RBFNN does not include the training time (because training is
usually performed offline). From the average simulation time,
it is clear that FR is the fastest beamformer; however, it gives
bad results compared with the FPA and the RBFNN. Moreover,
we can see that the RBFNN is five times faster than the FPA.
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Fig. 7. Elevation–Dopplervelocityspectrographsof (a)Fig. 6(a)and(b)Fig. 6(b).

TABLE IV
CHARACTERISTICS OF RBFNN TRAINING FOR NUMERICAL SIMULATION

D. Comparison With Capon Beamformer

1) Capon Beamforming: In the CP method, the received
power is minimized with a unity gain constraint in the lock
direction [14]. In CP, the array weights are given by

wm
CP =

R−1
x a(θm)

aH(θm)R−1
x a(θm)

. (25)

2) Point and Distributed Targets: The CP is compared with
the FR, FPA, and RBFNN methods using the same radar
signal simulator discussed earlier. Although 256 pulses are not
transmitted in the PAR observation, this simulation is carried
out to make a comparison with CP, which is not appropriate
with a small number of pulses. Fig. 9(a) shows the mean power
estimates for two point targets using the four methods.

Fig. 8. Estimation of two-cell distributed target with RBFNN trained at 0.5◦

elevation step and tested at 0.1◦ step.

Fig. 9. Estimation of point targets and formed beam pattern for FR, CP, FPA,
and RBFNN.

TABLE V
BIAS ERROR IN POINT-TARGET ESTIMATION

FOR FR, CP, FPA, AND RBFNN

Table V shows the bias error at two targets in each method,
where the RBFNN has the smallest bias error among all meth-
ods, whereas the CP has the largest bias error. Although the
CP correctly detects both targets with high resolution and suffi-
ciently suppresses sidelobes under the noise level, both received
power values are overestimated, by about 1.35 and 1.31 dB for
the left and right targets, respectively. This overestimation is
caused by the correlation between both signals (it is well known
that CP works when received signals are independent).

In Fig. 9(b), the formed beam patterns of each method for
an elevation of 25◦ are shown. Although CP forms a null at
an elevation of 35◦, it has the highest maximum sidelobe level
of −9.72 dB, whereas all other methods have almost the same
maximum sidelobe level at about −13 dB. It is clear that the
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Fig. 10. Estimation of one-cell distributed target and formed beam pattern for
FR, CP, FPA, and RBFNN.

Fig. 11. Estimationof two-cell distributed target for FR, CP, FPA, and RBFNN.

beamwidths of all methods are almost equivalent. This means
that these beamforming methods never sharpen main lobes,
which are essentially determined by antenna size and only
suppress sidelobes adaptively.

In Fig. 10(a), the mean power estimates for one-cell dis-
tributed target are shown for the four methods. As shown, CP
underestimates, caused by correlations between signal mean
power in all elevations. Although the CP solutions get closer
to the truth with more pulses as in the point-target simulation,
this characteristic of the CP beamformer is a serious problem
for precipitation radars because the distributed targets change
continuously and a correlation between narrow-band random
signals with similar frequencies is high. As shown in Fig. 10(b),
although CP beamformer suppresses sidelobes adaptively, as
the case with the FPA and RBFNN, it has the highest sidelobe
level of about −2 dB, whereas all other methods have also the
same sidelobe level at about −13 dB. As in the point-target
simulation, the main lobes are not sharpened for distributed
targets.

Fig. 11 shows the mean power estimates assuming a distrib-
uted target of two precipitation cells. Note that, in Fig. 6(a),
where 16 pulses are used, CP has too large underestimation
and is not described in the plot range. As shown in Fig. 11, the
CP results are better with a larger number of pulses. However,

TABLE VI
MEAN BIAS ERROR IN TWO-CELL DISTRIBUTED TARGET

ESTIMATION FOR FR, CP, FPA, AND RBFNN

Fig. 12. Reflectivity of PAR@OU at the first range bin and 0◦ azimuth for a
range of elevation from −30◦ to 90◦.

underestimation still remains. Table VI shows the mean bias
error of the four methods with 16 and 256 pulses for the
estimation of the two-cell distributed target of Figs. 6(a) and 11,
respectively. The mean bias error is the bias error averaged
over all elevation angles. It can be seen that RBFNN has the
least bias error among all methods then comes FPA whether for
16 or 256 pulses. CP cannot output valid results with 16 pulses.
Since mean power estimate has large negative bias error less
than −200 dB, with 256 pulses, the CP results are much im-
proved even over FR. It can be concluded that the estimation
accuracy values of FR, FPA, and RBFNN methods are almost
independent on the number of pulses, in contrast to CP.

IV. APPLICATION TO THE PAR@OU

Here, data collected by the PAR@OU were used to evaluate
the performanceof the FR, MMSE, FPA, and RBFNN methods.
The PAR@OU data provide a more realistic profile of preci-
pitation, which is not described in the former simulations; data
were collected in a rainy day on September 2, 2013. When
applied on PAR@OU, the MMSE method of [8] works well
for an elevation range from −90◦ to 90◦; however, it gives
much worse results than the other methods for a narrower
range of elevation, e.g., from −30◦ to 90◦, particularly at the
extreme elevations (below 0◦ and beyond 60◦), as shown in
Fig. 12 for the first range bin. This is because the MMSE
method suffers from a lack of convergence when the range of
elevation is shrunk. Fig. 13 shows a close-up of range–elevation
cross section of reflectivity for the four methods in elevations
from −10◦ to 10◦ with 0.1◦ spacing and 100 range bins (a total
distance of 10 km) at 0◦ azimuth. The output clutter levels
were 13.91, 9.73, 8.17, and 5.54 dB, for FR, MMSE, FPA,
and RBFNN, respectively. This comparison clearly illustrates
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Fig. 13. Range–elevation cross sections of reflectivity based on data collected
by the PAR@OU at 0◦ azimuth.

Fig. 14. Range–elevation cross sections of reflectivity of PAR@OU for the
RBFNN trained with 0.5◦ elevation step and tested with 0.1◦ step.

that the RBFNN correctly detects precipitation profiles with the
least clutter. The RBFNN training time was 4 s per range bin
(about 7 min for a 10-km range) using 201 epochs (or hidden
nodes) for a goal MSE of 1.0E-7 and a spread parameter of 1.

Average CPU time taken per range bin per elevation angle
was 63 μs, 0.1, 0.14, and 0.6 s, for FR, RBFNN, MMSE, and
FPA, respectively. Again, FR is the fastest beamformer among
all, and RBFNN is six times faster than FPA and about one and
half faster than MMSE.

Fig. 14 shows the range–elevation cross section of reflectivity
of the RBFNN beamformer trained with 0.5◦ elevation step and
tested with 0.1◦ step. The clutter level in this case is 4.86 dB,
and the total training time is 28 s.

V. CONCLUSION

In this paper, we have proposed a RBFNN-based beamformer
for phased array weather radar. The performance of the RBFNN
beamformer is evaluated for the point targets such as aircrafts
and missiles and the distributed targets such as precipitation.
Performance was validated by numerically simulated precip-
itation data, which has narrow-band random signals whose
Doppler spectrum is Gaussian shaped. Simulation results indi-
cate that the RBFNN algorithm adaptively suppresses sidelobes
and correctly estimates power; it has also been shown that its
performance is superior to that of the FR, CP, and FPA methods.
Moreover, the RBFNN has shown excellent performance even
with 16 pulses; additionally, it is anticipated that strong ground

clutter contaminates the desired distributed signals because
the PAR is designed to be installed in an urban area. In the
numerical simulations with strong ground clutter, the RBFNN
has shown performance as good as without ground clutter.
Evaluation with real data obtained by the PAR@OU was also
carried out, where the RBFNN is shown to be appropriate for
real-time beamforming of PAR@OU, which requires around
16 pulses per single direction in order to scan rapidly. The
RBFNN estimated PAR@OU reflectivity with less clutter than
FR, MMSE, and FPA, taking about 4 s training time per range
bin. These results indicate that this RBFNN approach can be
applied to pulse compression weather radars for ranging with
high resolution [20].
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